中学学习数学方法总结归纳集锦
www.977job.com中学学习数学方法总结1
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
首先,要帮助孩子建立起重视概念理解的意识。因为很多问题的产生,都是理解不到位引起的。
比如,初中引入了平方计算,有的孩子理解不了平方的算法,会把3的平方算成6。
比如,1-3=1+(-3),减一个数等于加上它的相反数,并且要加括号,或者反过来要去括号,有的孩子不理解这个过程,就会在计算中犯错。
出现的第二个大问题,来自于习惯。有些习惯在小学养成,小学题目比较简单,还不会有明显的影响,但到了初中,难度逐渐上升以后,这些习惯会有很大危害。
小学的知识学习,难度低一些,这些习惯影响不大,不容易被发现。但到了初中,家长们要注意一下,一定要早发现,早纠正。因为早的话,可以为后面的学习提升效率,铺平道路,反之,晚发现会让知识漏洞越来越多,知识体系越庞大反而越脆弱,再补起来就会很棘手。
刚上初中,讲解的内容比较简单,笔记记录不多,但这个时候,要有意识地鼓励孩子,去更好的记录笔记。同时,一些记了笔记的孩子,还会发生一个新的问题,就是题目不会做的时候,会干瞪着题想,不知道去笔记上翻例题、公式,然后再解。虽然我们不能让孩子形成不背公式看笔记做题的习惯,但是,我们也希望孩子,在没有老师在身边时,能够形成自己找到学习资料,找到解题办法的意识和能力
1、做好预习:
2、认真听课:
3、认真解题:
4、及时纠错:
5、学会总结:
6、学会管理:
中学学习数学方法总结3
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
9、几何变换法
几何变换包括:(1)平移;(2)旋转;(3)对称。
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
小学数学与初中数学存在着差异。小学数学着重培养学生的计算能力,而初中数学则是要培养学生用数学关系进行说理的能力。也就是说,初中数学中有一些开放性的题,还有些一题多解的题。所以对于刚刚升入中学的学生来说会有些不适应,对此,学生们不要心急,这是个思维转变的过程,今后会在老师的指导下,通过不断积累和做题来调整。初一的数学教材中,有许多公式及定理,这些知识光靠死记硬背是不行的,学生应该按照老师指点的方法,或是自己寻找的方法来记忆,在理解的基础上来掌握这些定理和公式,这样不但记得牢而且用得活。
恐惧心理也是初一学生在学习数学的过程中遇到的一个共性问题。因为多数的学生在学习的过程中都会遇到困难,在解决难题的过程中,就会产生恐惧心理,久而久之,有的学生见到数学就害怕,不喜欢数学。刘老师认为,兴趣是的老师。有了兴趣,就会喜欢学、愿意学。数学与实际生活联系紧密,所以学生可以试着用数学知识来解决生活中的实际问题,从中培养学习数学的兴趣。在培养兴趣方面,还可以有选择的看一些好的电视节目。比如《三星智力快车》、《科学与探索》以及中央十套的一些节目,都很适合初中阶段的学生学习。同时,还应该养成好的学习规律和生活规律,培养良好的生活习惯。
中学学习数学方法总结5
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
2.主动思考
主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
3.善于总结规律
(1)本题最重要的特点是什么?
(3)本题你是怎样观察、联想、变换来实现转化的?
(5)解本题最关键的一步在那里?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
4.拓宽解题思路
5.必须要有错题本
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。五个方面分别为:
②为什么要这样做。
④还可以怎样做,有其它方法吗?
千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。
现在很多学生用一些app来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。
相关热词: